ECON 0150 | Economic Data Analysis

The economist’s data analysis skillset.

Part 4.3 | Model Residuals and Diagnostics



General Linear Model

... a flexible approach to run many statistical tests.

The Linear Model: y; = 5 + 81X +€;

e [ is the intercept (value of y when x = ()
e (31 is the slope (change in y per unit change in x)

e ¢ is the error term (random noise around the model)

OLS Estimation: Minimizes . ?:1 Eiz



GLM: Intercept Model

A one-sample t-test is a horizontal line model.
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> the intercept [ is the estimated mean temperature

> the p-value is the probability of seeing Py if the null is true



GLM: Intercept + Slope

A regression is a test of relationships.
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> the intercept parameter [ is the estimated temperature at () on the horizontal
> the slope parameter B, is the estimated change in y for a 1 unit change in x

> the p-value is the probability of seeing parameter () or 1) if the null is true



GLM: Intercept + Slope

Which model do you think offers better predictions?
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> our model will offer inaccurate predictions if some assumptions aren t met



GLM Assumptions

Our test results are only valid when the model assumptions are valid.

1. Linearity: The relationship between X and Y is linear
2. Homoskedasticity: Equal error variance across all values of X
3. Normality: Errors are normally distributed

4. Independence.: Observations are independent from each other



GLM Assumptions: why check?

Assumption violations affect our inferences

If assumptions are violated:

o Coefficient estimates may be biased
o Standard errors may be wrong
o p-values may be misleading

e Predictions may be unreliable

> to test whether the model is ‘specified’, we can calculate the residuals and the
model predictions



Model Residuals

... we can directly examine the error of the model.
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# Calculate residuals
residuals = model.resid
sns.histplot(residuals)

> this is €
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Model Predictions

... we can directly examine the predictions of the model.
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# Calculate predictions
predictions = model.predict()
sns.histplot(predictions)

> this is y, the model prediction
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Exercise 4.2 L Residual Plot of Happiness and GDP

A Residual Plot directly visualizes the error for each model estima

# Residual Plot: predictions against residuals
plt.scatter(predictions, residuals)
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Assumption 1: Checking for Linearity

The errorterm should be unrelated to the fitted value.
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> the left figure shows that the model is equally wrong everywhere
> the right figure shows that the model is a good fit at only some values



Assumption 1: Checking for Linearity

A non-linear relationship will produce non-linear residuals.

Linear Regression: Age vs. Income
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> [inear model misses curvature, leading to systematic errors



Handling Non-Linear Relationships

Transform variables to become linear

Adding a square term or performing a log transformation can fix the problem.

instead of
income = 3 + Pjage + €
we could use
income = B + Biage + Brage” + ¢

It’s also common to log transform either the x or y variable.



Assumption 2: Homoskedasticity

Residuals should be spread out the same everywhere.

Which one of these figures shows homoskedasticity?
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> the left figure shows constant variability (homoskedasticity)

> the right figure shows increasing variability (heteroskedasticity)

> residual plots should show that the model is equally wrong everywhere



Assumption 2: Homoskedasticit

The spread of residuals should not change across values of X.

Education vs. Wages: Increasing Spread Residuals vs. Fitted Values: Heteroskedasticity
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> the spread of points increases as education increases

> PhD wages vary more than high school wages



Handling Heteroskedasticity

Robust standard errors give more accurate measures of uncertainty

Robust Standard Errors adjust for the changing spread in our data.

Use robust standard errors to give more accurate hypothesis tests.

# Fit the model with robust standard errors (HC3: heteroskedastic—-constant)
robust_model = smf.ols('wages ~ education', data=df).fit(cov_type='HC3")
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Assumption 3: Normality

Residuals should be normally distributed.

By the CLT we can still use GLM without this so long as the sample 1s large.
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Assumption 4: Indepedence

Observations are independent from each other

We’ll return to this assumption in Part 4.4 | Timeseries.



Lookin% Forward
Extending the GLM framework

Next Up:

e Part 4.3 | Categorical Predictors
e Part 4.4 | Timeseries
e Part 4.5 | Causality

Later:

e Part 5.1 | Numerical Controls
e Part 5.2 | Categorical Controls

o Part 5.3 | Interactions
e Part 5.4 | Model Selection

> all built on the same statistical foundation



