
ECON 0150 | Economic Data Analysis

Part 4.3 | Model Residuals and Diagnostics

The economist’s data analysis skillset.



General Linear Model

The Linear Model: 

… a flexible approach to run many statistical tests.
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GLM: Intercept Model
A one-sample t-test is a horizontal line model.

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = + 𝜀𝛽0

> the intercept  is the estimated mean temperature𝛽0

> the p-value is the probability of seeing  if the null is true𝛽0



GLM: Intercept + Slope
A regression is a test of relationships.

WaitTime = + MinutesAfterOpening + 𝜖𝛽0 𝛽1

> the intercept parameter  is the estimated temperature at 0 on the horizontal𝛽0

> the slope parameter  is the estimated change in y for a 1 unit change in x𝛽1

> the p-value is the probability of seeing parameter (  or ) if the null is true𝛽0 𝛽1



GLM: Intercept + Slope
Which model do you think offers better predictions?

> our model will offer inaccurate predictions if some assumptions aren’t met



GLM Assumptions
Our test results are only valid when the model assumptions are valid.

1. Linearity: The relationship between X and Y is linear

2. Homoskedasticity: Equal error variance across all values of X

3. Normality: Errors are normally distributed

4. Independence: Observations are independent from each other



GLM Assumptions: why check?

If assumptions are violated:

Coefficient estimates may be biased
Standard errors may be wrong
p-values may be misleading
Predictions may be unreliable

Assumption violations affect our inferences

> to test whether the model is ‘specified’, we can calculate the residuals and the
model predictions



Model Residuals
… we can directly examine the error of the model.

# Calculate residuals1
residuals = model.resid2
sns.histplot(residuals)3

> this is 𝜀
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Model Predictions
… we can directly examine the predictions of the model.

# Calculate predictions1
predictions = model.predict()2
sns.histplot(predictions)3

> this is , the model prediction𝑦 ̂

http://localhost:6095/?view=print
http://localhost:6095/?view=print
http://localhost:6095/?view=print
http://localhost:6095/?view=print
http://localhost:6095/?view=print
http://localhost:6095/?view=print
http://localhost:6095/?view=print
http://localhost:6095/?view=print
http://localhost:6095/?view=print


Exercise 4.2 | Residual Plot of Happiness and GDP
A Residual Plot directly visualizes the error for each model estimate.

# Residual Plot: predictions against residuals1
plt.scatter(predictions, residuals)2
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Assumption 1: Checking for Linearity
The error term should be unrelated to the fitted value.

> the left figure shows that the model is equally wrong everywhere

> the right figure shows that the model is a good fit at only some values



Assumption 1: Checking for Linearity
A non-linear relationship will produce non-linear residuals.

> linear model misses curvature, leading to systematic errors



Handling Non-Linear Relationships

Adding a square term or performing a log transformation can fix the problem.

Transform variables to become linear

instead of

income = + age + 𝜀𝛽0 𝛽1

we could use

income = + age + + 𝜀𝛽0 𝛽1 𝛽2age2

It’s also common to log transform either the  or  variable.𝑥 𝑦



Assumption 2: Homoskedasticity

Which one of these figures shows homoskedasticity?

Residuals should be spread out the same everywhere.

> the left figure shows constant variability (homoskedasticity)

> the right figure shows increasing variability (heteroskedasticity)

> residual plots should show that the model is equally wrong everywhere



Assumption 2: Homoskedasticity
The spread of residuals should not change across values of X.

> the spread of points increases as education increases

> PhD wages vary more than high school wages



Handling Heteroskedasticity

Robust Standard Errors adjust for the changing spread in our data.

Robust standard errors give more accurate measures of uncertainty

Use robust standard errors to give more accurate hypothesis tests.

# Fit the model with robust standard errors (HC3: heteroskedastic-constant)1
robust_model = smf.ols('wages ~ education', data=df).fit(cov_type='HC3')2
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Assumption 3: Normality

By the CLT we can still use GLM without this so long as the sample is large.

Residuals should be normally distributed.



Assumption 4: Indepedence

We’ll return to this assumption in Part 4.4 | Timeseries.

Observations are independent from each other



Looking Forward
Extending the GLM framework

Next Up:

Part 4.3 | Categorical Predictors
Part 4.4 | Timeseries
Part 4.5 | Causality

Later:

Part 5.1 | Numerical Controls
Part 5.2 | Categorical Controls
Part 5.3 | Interactions
Part 5.4 | Model Selection

> all built on the same statistical foundation


