ECON 0150 | Economic Data Analysis

The economist’s data analysis stillset.

Part 4.1 | Numerical Predictors



GLM: bivariate data

Do people wait longer later in the day?
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GLM: bivariate data

Do people wait longer later in the day?
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> but in general we don t ask many questions about vertical incercepts



GLM: bivariate data

Do people wait longer later in the day?
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Lets compare two models.

e Model 1 (Intercept Only): y = b
e Model 2 (Intercept+Slope): y = mx + b



GLM: bivariate data

Do people wait longer later in the day?

Raw Data
°
@
12 ® Y ® e
B o o°
2 10 ® ° ®
= ® o
= ® ] ®e ©°
= ™ L]
~— 8 ® [ ] ]
S % _ ©° :.
AS e o
= L ® @ o
3 1° °e_ o *°
S @
= 0®e% 0 ®
4 (]
®
°
2' T T T 1
0 200 400 600
Minutes After Opening

Model 1:
y=Bo+e
®°
. ® o
o 0% i%ie
o L 0 g
g 5":. HE
& %% een © 0
s@s® 0 (°
o
.' —— Bo=7.69 B1=0
0 200 400 600
Minutes After Opening

Model 2:
y=Bo+Pix+e¢
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> a slope (1) improves model fit (MSE, ‘wrongness’) when theres a relationship

> the intercept is no longer the mean



Bivariate GLM: minimizing MSE

Which model minimizes the models’ ‘wrongness’ (Mean Squared Error)?

Model A Model B Model C
MSE =9.71 MSE =4.57 MSE = 3.25
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> Model C minimizes MSE!



Bivariate GLM: minimizing MSE

GLM selects the (3, with the smallest MSE.

Model C:
y=Bo+Pix+e¢ MSE for Different Slopes
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> this slope (f1) gives the best guess of the relationship between x and y

> but what if the true slope is zero ... could this slope be just sampling error?



Bivariate GLM: samplin

Like before, if we take many samples, we get s
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Bivariate GLM: samphn g distribution of slopes

The slope coefficient follows a normal distribution centered on the population slope.
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Slope Coefficient: B1

> the slopes follow a normal distribution around the population relationship!

> this lets us perform a t-test on the slope!



Bivariate GLM: samphn g distribution of slopes

The slope coefficient follows a normal distribution centered on the population slope.
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Slope Coefficient: B1

> we don t know the entire distribution, just our sample slope



Bivariate GLM: samphn g distribution of slopes

The slope coefficient follows a normal distribution centered on the population slope.
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Slope Coefficient: B1

> center the distribution on our null

> check the distance from the sample



Bivariate GLM: samphn g distribution of slopes

The slope coefficient follows a normal distribution centered on the population slope.
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Slope Coefficient: B1

> the p-value is the probability of something as far from the null as our sample



Bivariate GLM: samphn g distribution of slopes

The slope coefficient follows a normal distribution centered on the population slope.
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Slope Coefficient: B1

> p-value: the ‘surprisingness’of our sample if 1 =0
> the probability of seeing our sample by chance if there is no relationship

> a small p-value is evidence against the null hypothesis (B; = 0)



Bivariate GLM: sampling distribution of slopes

Many possible models we might obseive by chance if the null (3, = 0) were true.

Null Slopes
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> how likely does it look like this slope was drawn from the null slopes?

> p-value: the probability a slope as extreme as ours under the null (51 = 0)



Exercise 4.1 | Happiness and Per Capita GDP

Are wealtheir countries happier



GLM: predictions

What wait time should we expect at 100 minutes after open?
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GLM: predictions

What wait time should we expect at 100 minutes after open?

15.0

12.5 A

—
=
S

Wait Time (minutes)
™~
n

50 !
|
L]
|
2.5 1 q|.
|
N
0.0 1 |
Py — =431+ 0.011x
[ ) : * Prediction at 100 min: 5.4
—-2.5 . l . : : : .
0 100 200 300 400 500 600
Minutes After Opening

> you can find this with a calculator!

> plug x = 100 into the equation y = 431 +0.011x



GLM: predictions

What wait time should we expect at 200 minutes after open?
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GLM: predictions

What wait time should we expect at 200 minutes after open?
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Exercise 4.1 | Happiness and Per Capita GDP

Are wealtheir countries happier



GLM: interpretation

How much does wait time increase every minute after open?

— y=4.314+0.011x
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> (31 tells us how much y increases with every 1 unit increase in X



Exercise 4.1 | Happiness and Per Capita GDP

How much does happiness increase for each additional 31,000 of per capita GDP?



The General Linear Model

GLM performs a t-test on all model coefficients.

Univariate (Part 3): y = o + €

e Equivalent to a one-sample t-test

o Tests whether po = Mo (default null)

Numerical Predictor: y = 5y + 51 x + €

e X is a numerical variable (like age, income, temperature, etc.)
o Tests both intercept (5o = 0) and slope (51 = 0)
o Null hypothesis on slope: no relationship between x and y (51 = 0)



The General Linear Model

GLM uses the idea of a t-test with any coefficient.

Categorical Predictor (next time): y = fo + f1X + €

e X is a categorical variable (like age, income, temperature, etc.)

e Equivalent to a two-sample t-test (when X is binary)

Multivariate GLM (Part 5):

e Adds more predictor variables: y = o + P1X1 + 2Xo+. . . +€

o Each coefficient has its own t-test against the null that it equals zero



Economic Applications

GLM is the workhorse Statistical tool in empirical economics.

Labor Economics: relationship between education and wages.
wage = 3 + f1education + ¢
Policy Analysis: relationship between minimum wages and employment.
employment = 5y + 5y minimum_wage + €
Political Economy: relationship between neighbor’s party and voter turnout

voted = By + Bineighborhood_politics + €



Bivariate GLM: Numerical Predictors

Summary

GLM Framework:

o T-tests and regression are part of the same very flexible framewortk.

Numerical Predictors:

e Bivariate GLM extends the t-test by allowing continuous predictors.

Same Distribution:

e Coefficient estimates follow t-distributions centered on the true population
values.

Same Interpretation:

o The p-values have the same interpretation: probability of seeing results this
extreme if the null is true.



Lookin% Forward
Extending the GLM framework

Next Up:

o Part 4.2 | Bad Models
e Part 4.3 | Categorical Predictors

e Part 4.4 | Timeseries
o Part 4.5 | Causality

Later:

o Part 5.1 | Numerical Controls
e Part 5.2 | Categorical Controls
e Part 5.3 | Interactions

o Part 5.4 | Model Selection

> all built on the same statistical foundation



