ECON 0150 | Economic Data Analysis

The economist's data analysis skillset.

Part 3.4 | Hypothesis Testing

A Big Question How do we learn about the population when we don't know μ or σ ?

- Part 3.1 | Known Random Variables
 - If we know the random variable, we can answer all kinds of probability questions
- Part 3.2 | Sampling and Unknown Random Variables
 - The sample means of unknown random variables will approximate a normal distribution around the truth
- *Part 3.3* | *Confidence Intervals*
 - We can use the sampling distribution to know the probability that the sample mean (\bar{x}) will be close to the population mean (μ)

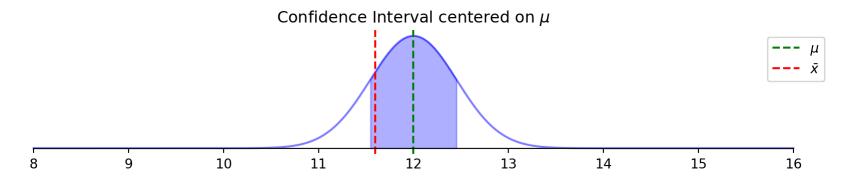
Sampling Distribution: Unknown μ ; Known σ If we know the population mean, we know the sampling distribution is approximately normal.

- The sample mean is drawn from an approximately normal distribution with mean μ and standard error σ/\sqrt{n} .
- Each time we draw a sample we see a different sample mean.
- What do we do that we don't observe μ ? We measure 'closeness'.

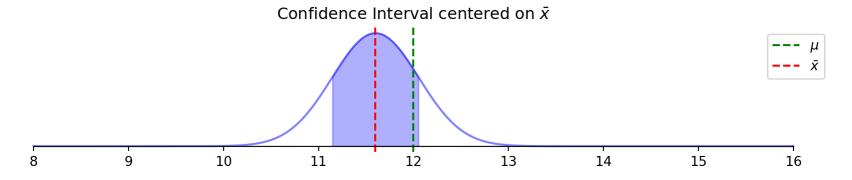
Unknown μ : Two Perspectives

There are two mathematically equivalent perspectives to think about "closeness" between μ and \bar{x} .

Perspective 1: probability \bar{x} is close to μ



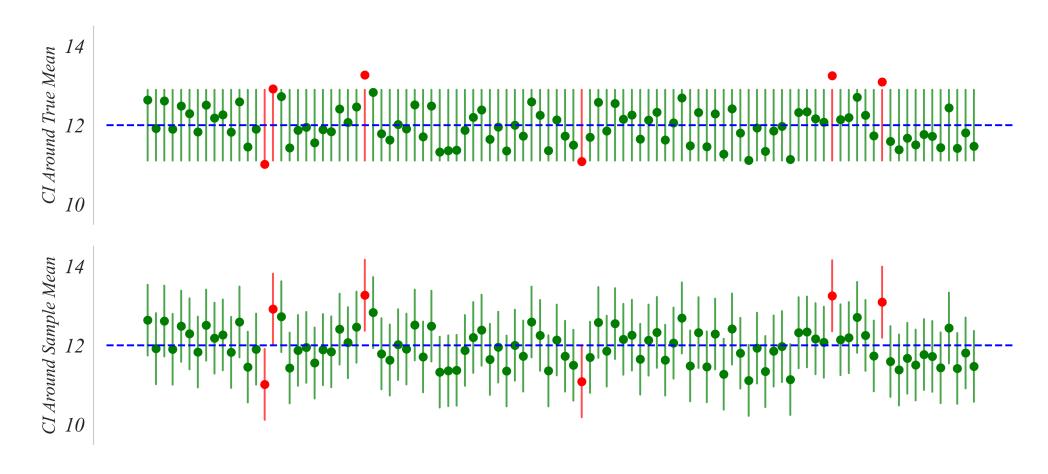
Perspective 2: probability μ is close to \bar{x}



> if \bar{x} is in the CI around μ , then μ will be in the CI around \bar{x} !

Unknown μ : Two Perspectives There are two mathematically equivalent perspectives to think about "closeness" between μ and \bar{x} .

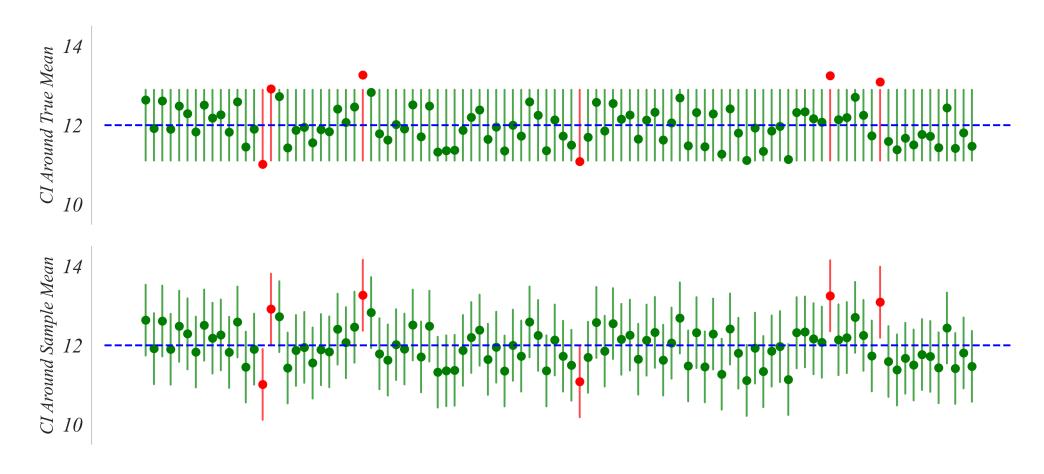
I repeatedly sampled a distribution and constructed a 95% confidence interval.



> the samples with \bar{x} in the CI around μ have μ in the CI around \bar{x}

Unknown μ : Two Perspectives There are two mathematically equivalent perspectives to think about "closeness" between μ and \bar{x} .

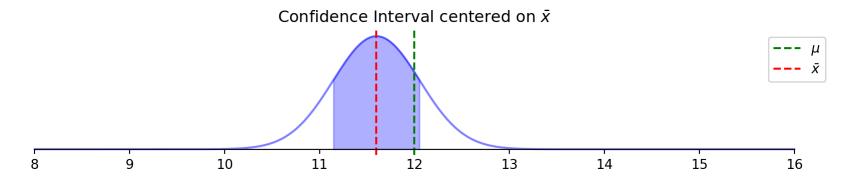
I repeatedly sampled a distribution and constructed a 95% confidence interval.



> it is mathematically equivalent to check whether μ is in the CI around \bar{x} !

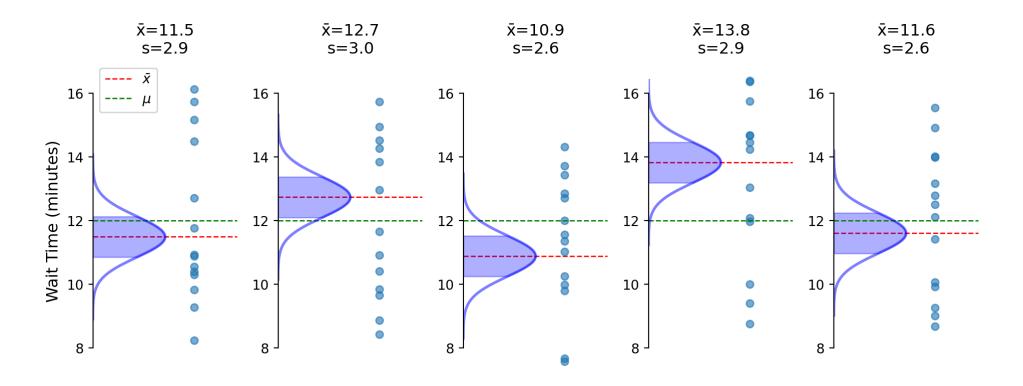
Unknown μ : How 'close' is μ to \bar{x} ? The distance between \bar{x} and μ works both ways.

Now we can use the **Sampling Distribution** around \bar{x} to know the probability that μ is any distance from \bar{x} .



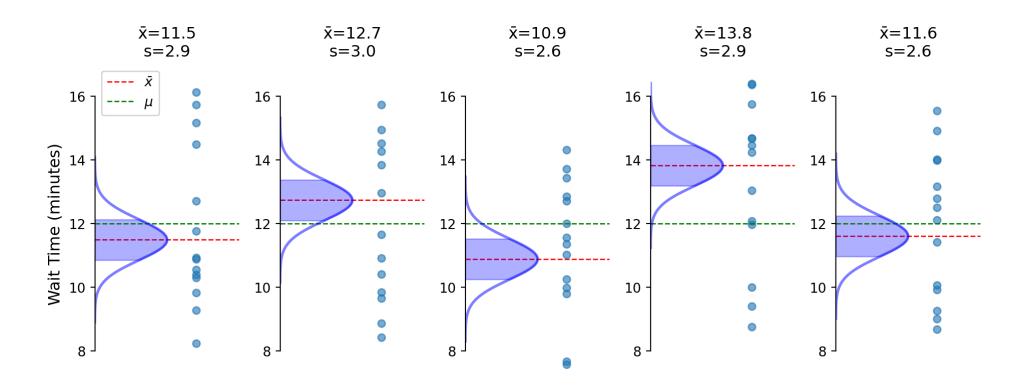
> same distribution shape, just different reference points

Unknown μ : How 'close' is μ to \bar{x} ? Each sample gives us a different \bar{x} and S.



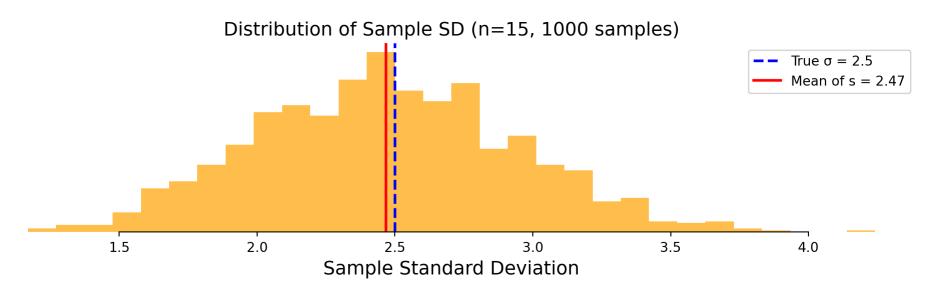
- > notice both \bar{x} (red lines) and S vary across samples
- > each sample creates its own confidence interval for where \mu could be
- > now we know the probability μ is in the CI around \bar{x} !

Unknown σ : How 'close' is μ to \bar{x} ? Each sample gives us a different \bar{x} and S.



- > but here we're creating the Confidence Intervals using a known σ , which we will never actually observe
- > each sample has a different S!

Unknown σ : Variability of SJust like \bar{x} varies around μ , the S varies around σ .

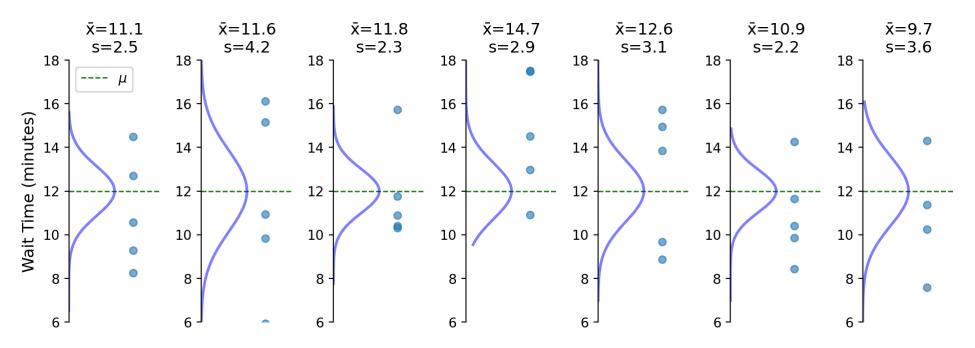


- > we centered the Sampling Distribution on \bar{x} instead of μ
- > what would happen if we used the S in place of σ as a guess?

Exercise 3.4 | Sampling Variation in S Will a 90% confidence interval using S in place of σ correctly contain roughly 90% of the population

Will a 90% confidence interval using S in place of σ correctly contain roughly 90% of the population means?

Samples (n = 5) with the sampling distribuion centered on the population mean to show the differences in each samples' spread.



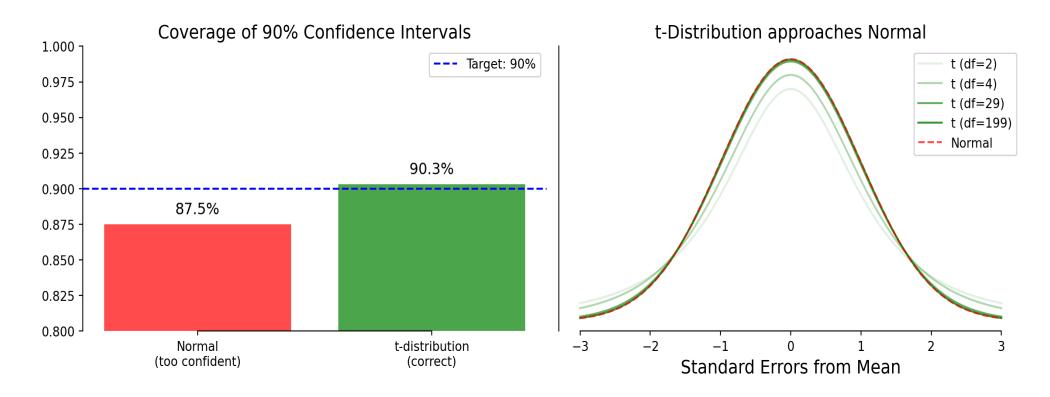
Exercise 3.4 | Sampling Variation in S Will a 90% confidence interval using S in place of σ correctly contain roughly 90% of the population

Will a 90% confidence interval using S in place of σ correctly contain roughly 90% of the population means?

Simulate many samples and check how often the 90% confidence interval contains the population mean when we simply swap S for σ .

> theres an additional layer of variability in the sampling distribution coming from the variability in the sample standard deviation (S)

Exercise 3.4 | Sampling Variation in S Using the normal distribution with S gives wrong coverage rates (n=15).

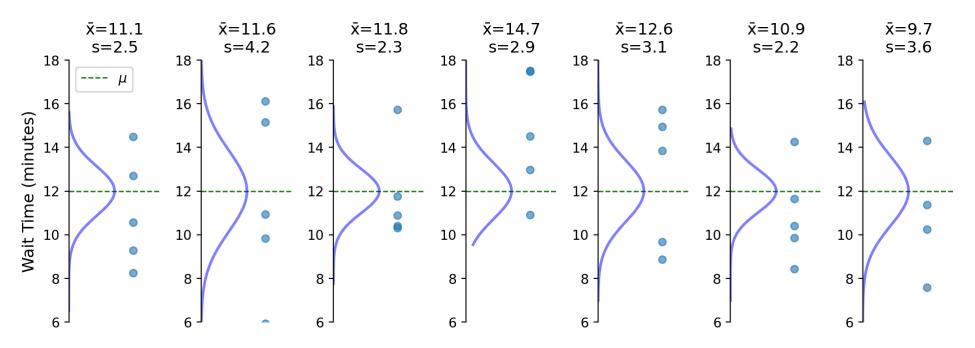


- > we would predict 90% when the actual number is lower (87.5%)
- > we would be **too confident** if we use the Normal with S/\sqrt{n}

Exercise 3.4 | Sampling Variation in S Will a 90% confidence interval using S in place of σ correctly contain roughly 90% of the population

Will a 90% confidence interval using S in place of σ correctly contain roughly 90% of the population means?

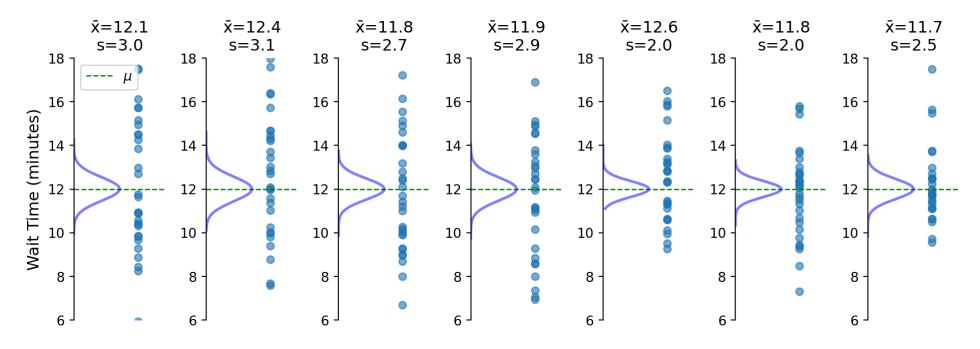
Samples (n = 5) with the sampling distribuion centered on the population mean to show the differences in each samples' spread.



Exercise 3.4 | Sampling Variation in S Will a 90% confidence interval using S in place of σ correctly contain roughly 90% of the population

means?

Samples (n = 30) with the sampling distribuion centered on the population mean to show the differences in each samples' spread.



- > as the sample size grows (now n=30), this variability gets smaller
- > but we'll always use a t-Distribution instead of a Normal for testing

Unknown μ and σ : Building Models What if we want to test a specific claim about the unobserved population mean?

Is our data consistent with the following specific claim?

• "The mean wait time is 10 minutes."

> instead of finding where some μ might be, we're testing a specific value of μ

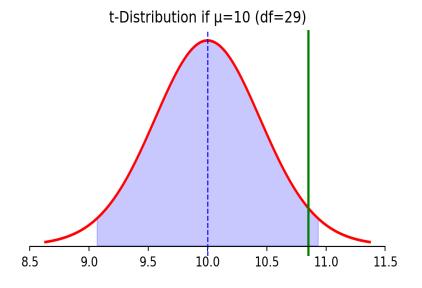
Example: Wait Times *If* $\bar{x} = 10.85$, *is that consistent with* $\mu_0 = 10$?

If sample standard deviation is s = 2.5:

$$SE = \frac{S}{\sqrt{n}}$$

$$SE = \frac{2.5}{\sqrt{30}}$$

$$SE = 0.456$$



```
1 s = 2.5
2 n = 30
3 \text{ se} = \text{s} / \text{np.sqrt}(30)
```

Example: Wait Times

The math to answer this question is identical to confidence intervals.

If sample standard deviation is s = 2.5:

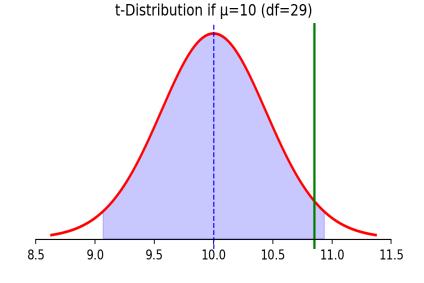
$$SE = 0.456$$

If true mean is $\mu_0 = 10$:

$$\bar{x} \sim t_{29}(10, 0.456)$$

So the critical value for 95%:

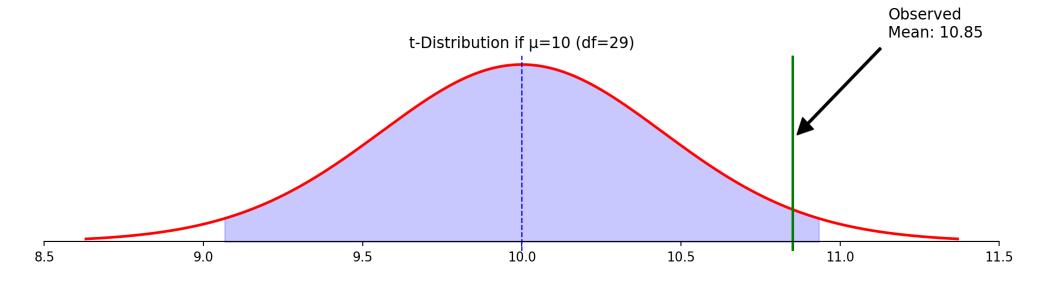
$$t_{crit} = 2.045$$



1 stats.t.interval(0.95, df=30)

Example: Wait Times

The math to answer this question is identical to confidence intervals.



A 95% confidence interval around μ_0 would be: [9.07, 10.93]

- > our observed mean ($\bar{x} = 10.85$) is within this interval not surprising if $\mu=10$
- > but if we observed $\bar{x} = 11.5$, that would be outside the interval surprising!

The Null Hypothesis

We formalize this approach by setting up a "null hypothesis"

Null Hypothesis (H_0) : The specific value or claim we're testing

• H_0 : $\mu = 10$ (wait time is 10 minutes)

Alternative Hypothesis (H_1 or H_a): What we accept if we reject the null

• $H_1: \mu \neq 10$ (wait time is not 10 minutes)

Testing Approach:

- Calculate how "surprising" our data would be if H_0 were true
- If sufficiently surprising, we reject H_0

Quantifying Surprise: p-values The p-value measures how compatible our data is with the null hypothesis.

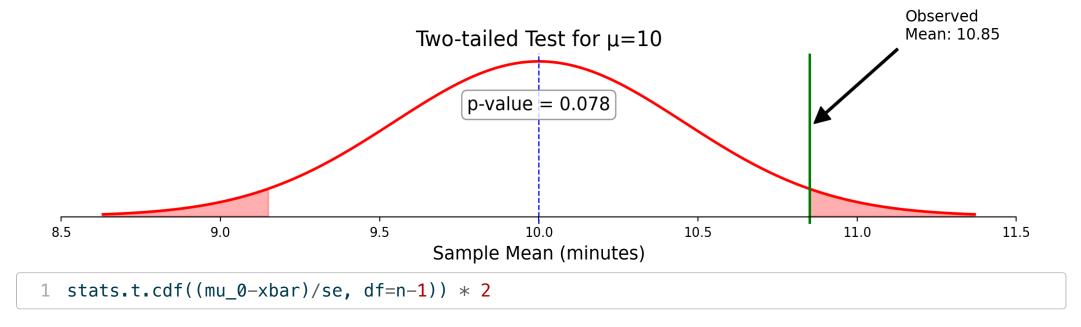
p-value: The probability of observing a test statistic at least as extreme as ours, if the null hypothesis were true

For our example:

- *Null:* $\mu = 10$
- *Observed*: $\bar{x} = 10.85$
- > How likely is it to get \bar{x} this far or farther from 10, if the true mean is 10?

Quantifying Surprise: p-values Example cont.: What is the probability of an error as large as the observed mean?

> how likely is it to get $\bar{\mathbf{x}}$ this far or farther from 10, if the true mean is 10?



- > interpretation: if $\mu=10$, we'd see \bar{x} this far from 10 about 7.2% of the time
- > often, we reject H_0 if p-value < 0.05 (5%)
- > here, p-value > 0.05, so we don't reject the claim that $\mu=10$

Test Statistic: The t-statistic

We can standardize our result for easier interpretation

The **t-statistic** measures how many standard errors our sample mean is from the null value:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

Where:

- \bar{x} is our sample mean (10.85)
- μ_0 is our null value (10)
- *s is our sample standard deviation (2.5)*
- n is our sample size (30)

Test Statistic: The t-statistic

We can standardize our result for easier interpretation

The **t-statistic** measures how many standard errors our sample mean is from the null value:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{10.85 - 10}{2.5/\sqrt{30}} = \frac{0.85}{0.456} = 1.86$$

Where:

- \bar{x} is our sample mean (10.85)
- μ_0 is our null value (10)
- *s is our sample standard deviation (2.5)*
- n is our sample size (30)

The t-test

This example has become a formal hypothesis test.

One-sample t-test:

- $H_0: \mu = 10$
- $H_1 : \mu \neq 10$
- *Test statistic:* t = 1.86
- Degrees of freedom: 29
- *p-value*: 0.072

Decision rule:

- If p-value < 0.05, reject H_0
- Otherwise, fail to reject H_0

```
1 # Imports
2 import numpy as np
3 from scipy import stats
```

```
1 # Sample Data
2 sample_mu = 10.85
3 pop_mu = 10 # null hypothesis
4 std_dev = 2.5
5 n = 30
```

```
1 # Calculate t-statistic
2 t_stat = (sample_mu - pop_mu) / (std_dev / np.sqrt(n))
```

```
1 # Calculate p-value
2 p_value = 2 * (1 - stats.t.cdf(abs(t_stat), df=n-1))
```

> t-tests are a univariate version of regression

Statistical vs. Practical Significance

A caution about hypothesis testing

Statistical significance:

- Formal rejection of the null hypothesis (p < 0.05)
- Only tells us if the effect is unlikely due to chance

Practical significance:

- Whether the effect size matters in the real world
- A statistically significant result can still be tiny
- > with large samples, even tiny differences can be statistically significant
- > always consider the magnitude of the effect, not just the p-value

\times Not: The probability that H_0 is true

- The p-value doesn't tell us if the null hypothesis is correct. It assumes the null is true and then calculates how surprising our result would be under that assumption.
- Example: A p-value of 0.04 doesn't mean there's a 4% chance the null hypothesis is true.

- **Not:** The probability that the results occurred by chance
- All results reflect some combination of real effects and random variation. The p-value doesn't separate these components.
- Example: A p-value of 0.04 doesn't mean there's a 4% chance our results are due to chance and 96% chance they're real.

- \times **Not:** The probability that H_1 is true
- The p-value doesn't directly address the alternative hypothesis or its likelihood.
- Example: A p-value of 0.04 doesn't mean there's a 96% chance the alternative hypothesis is true.

- Correct: The probability of observing a test statistic at least as extreme as ours, if H_0 were true
- It measures the compatibility between our data and the null hypothesis.
- Example: A p-value of 0.04 means: "If the null hypothesis were true, we'd see results this extreme or more extreme only about 4% of the time."
- > think of it like this: The p-value answers "How surprising is this data if the null hypothesis is true?" not "Is the null hypothesis true?"

Looking Forward: Bivariate GLM This framework extends directly to regression analysis.

Next time:

- Bivariate GLM: Comparing means between two groups
- > the hypothesis testing framework is foundational for modern science

Looking Forward: Regression This framework extends directly to regression analysis.

Today's model: $E[y] = \beta_0$ (just an intercept)

Next: $E[y] = \beta_0 + \beta_1 x$ (intercept and slope)

- Each β coefficient will have its own t-test
- Same framework: estimate \pm t-critical \times SE
- The t-distribution accounts for uncertainty in our estimates
- > regression is just an extension of what we learned today

Summary We've built the foundation for statistical modeling.

- Flipped perspective: center on what we observe (\bar{x}) not what's unknown (μ)
- Sample SD varies, creating need for t-distribution
- Built our first model: $E[y] = \beta_0$
- Tested hypotheses by shifting data
- Connected hypothesis tests to confidence intervals

> these tools form the foundation of econometric analysis