ECON 0150 | Economic Data Analysis

The economist's data analysis skillset.

Part 3.2 | Sampling and the Central Limit Theorem



A Big Question

If all we see’is the sample, how do we learn about a population?

e In general, a population’s random variables will be unobservable.

o [f we only see a sample, what can we say about the population?



Random Variables: Known

If we know the random variable, we can learn many things about the population.

* Probability wait time < 10: Wait Times Between 10-15 Minutes
s PX<10)=0.21

e Probability wait time > 15:
s P(X>15)=0.11

e Probability between 10 - 15:
« P(10<X<15) =0.59 \
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> when we know the probability function, we can calculate everything exactly



Random Variables: Known

If we know the random variable, we can learn many things about the population.
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> but what can we know about the population if we only see the sample?



Unknown

But if all we see is the sample, what can we know about a population?

Random Variables

=50, X; S)

Sample (N

2, 0=?)

Population (U

> how do we learn about u if all we have is n, X, and S?



Exercise 3.2 Jc Sampling Dice gsample s1ze: n=1)

Lets pretend we don t know the piobability function for dice.

Lets start with something boring.

1. Roll a dice once (sample size: n=1).

2. We'll plot the distribution of our samples.



Exercise 3.2 | Sampling Variability

Your samples have a lot of variability!

W Sample Mean (n=1)

0 1 2 3 4 5 6 7

> this variability perfectly matches what we would expect from a fair dice



Exercise 3.2 J{ Sampling Dice gn=2)

Lets pretend we don t know the piobability function for dice.

Next 1s something slighly less boring.

1. Roll a dice once (sample size: n=2).

2. We'll plot the distribution of our samples.



Exercise 3.2 | Sampling Variability

Like before, each sample has a Slzghly different sample mean.
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> theres a lot of variability in your sample means!

> what do you expect to see when we plot these sample means (x)?



Exercise 3.2 | Samp hng Variability

The variability in the sample medn with rger sample size.

W Sample Mean (n=1)
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> our sample means are more bunched (like a pyramid) in the middle! why?

> there are more ways to get 7/2 than 2/2!



Exercise 3.2 J{ Sampling Dice gn=3)

Lets pretend we don t know the piobability function for dice.

Next 1s something even less boring.

1. Roll a dice once (sample size: n=3).

2. We'll plot the distribution of our samples.



Exercise 3.2 | Samp hng Variability

The variability in the sample medn with rger sample size.
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> theres a even more variability in your sample means!

> what do you expect to see when we plot these sample means (X)?



Exercise 3.2 | Samp hng Variability

The variability in the sample medn with rger sample size.
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> what do you notice with the shape with n=37?



Exercise 3.2 | Samp hng Variability

The variability in the sample medn with rger sample size.
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> what do you notice with the shape with n=37?



Exercise 3.2 | Samp hng Variability

The variability in the sample medn with rger sample size.
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> there’s some curvature to the shape



Exercise 3.2 J{ Sampling Dice gn=30)

Lets pretend we don t know the piobability function for dice.

Next 1s something very un-boring.

1. Roll a dice once (sample size: n=30).

2. We'll plot the distribution of our samples.



Exercise 3.2 | Samp hng Variability

The variability in the sample medn with rger sample size.
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> theres a even more ways your sample could look!

> what do you expect to see when we plot these sample means (X)?



Exercise 3.2 | Sampling Variability

What happens when we really increase the sample size?
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> what do you notice with the shape with n=30?



Exercise 3.2 | Sampling Variability

What happens when we really increase the sample size?
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> the distribution of sample means gets tighter and more bell-shaped



Exercise 3.2 | Sampling Variability

What happens when we really increase the sample size?
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> what is this probability function in red?



Random Variables: Known

If we know the random variable, we can learn many things about the population.

* Probability wait time < 10: Wait Times Between 10-15 Minutes
s PX<10)=0.21

e Probability wait time > 15:
s P(X>15)=0.11

e Probability between 10 - 15:
« P(10<X<15) =0.59 \
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> when we know the probability function, we can calculate everything exactly



Random Variables: Unknown

If we take multiple samples, we get different sample means.

Each sample gives us a different estimate of the population mean.
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Random Variables: Unknown

If we take multiple samples, their means will vary.
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I Sample means (n=30)
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Random Variables: Unknown

If we take multiple samples, their means will vary, and by much less than the original distribution.

B Sample means (n=30)
Sample observations
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> why? think about rolling two dice... it’s much less likely to get a 2 than a 7



Random Variables: Unknown

As sample size grows, the distribution of the sample means approaches a normal distribution.

B Sample means (n=30)
Sample observations
—— Normal Distribution
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Random Variables: Unknown

As sample size grows, the normal distribution the sample means approach gets narrower.

B Sample means (n=30)
Sample means (n=1)

I Sample means (n=60)

—— Normal Distribution
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Random Variables: Unknown

The normal distribution the sample means approach is centered on the population mean!

B Sample means (n=30)
Sample means (n=1)
I Sample means (n=60)
I Sample means (n=1000)
—— Normal Distribution
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> the sample mean X follows a normal distribution around the truth W

x~N<”"\/ﬁ)



Random Variables: Unknown

This works for (nearly) any distribution shape as sample size increases.

. Sample Mean (n=1)
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The Central Limit Theorem

The distribution of sample means approximates a normal distribution as sample size increases,
regardless of the population s distribution.

Key insights: Distribution of Sample Means (n=30)

o Sample means cluster around u
e Standard error = o/\n

e Normal shape emerges

Implications:

lOI.O 10I.5 11I.0 lll.5 12I.O 12I.5 l?;.O 13I.5 l4l.0
o We can predict the behavior of x

o This works for (nearly) ANY
distribution



