ECON 0150 | Economic Data Analysis

The economist's data analysis pipeline.

Part 2.5 | Merging Data

Final Project Preview Exploring real questions with real data

Lets start working through a project together:

- **Question 1**: Were there systematic patterns in vote share changes between 2020 and 2024?
- Question 2: Do income levels relate to these voting shifts?
- Data: MIT Election Lab (county-level returns) + Census (median income)

> this is the kind of analysis you'll do for your final project

The Data Challenge
We have two separate datasets that need to be connected

Dataset 1: Presidential election results by county

- County name
- State
- *Vote counts for 2020*
- *Vote counts for 2024*

Dataset 2: Median household income by county

- County identifier
- Median income

Step 1: Explore Vote Shares Q. What do county-level vote shares look like?

First understand what we're working with.

```
1 # Histogram of 2024 vote shares
2 sns.histplot(elections, x='2020')
1 # Histogram of 2024 vote shares
2 sns.histplot(elections, x='2024')
```

Step 2: Compare Elections

Q. How did county vote shares change between 2020 and 2024?

Second, lets look at the relationship between Democratic Share in 2020 and 2024.

```
1 # Scatterplot comparing elections
2 sns.scatterplot(elections, x='2020', y='2024', alpha=0.5)
3
4 # Add 45-degree line
5 plt.plot([0,1], [0,1], 'r--', alpha=0.5)
```

- > points above the line shifted more Democratic
- > points below the line shifted more Republican
- > but what explains these shifts?

Step 3: Add Income Data Q. Does county income relate to voting shifts?

To answer this, we need to:

- 1. Load the income data
- 2. Merge it with our election data
- 3. Calculate the vote share change
- 4. Visualize the relationship

> but how do we connect two separate datasets?

Merging Data: The Concept Combining datasets based on common identifiers

The Key: Find a common column that uniquely identifies observations

- In our case: County FIPS codes (Federal Information Processing Standards)
- FIPS uniquely identify every US county
- Format: State code (2 digits) + County code (3 digits) = 5 digits total

> example: Allegheny County, PA = 42003

Types of Merges Different ways to combine datasets

Merge Type	Description	Example
1:1	Each row in A matches exactly one row in B	County → County
1:m	One row in A matches multiple rows in B	State → Counties
m:1	Multiple rows in A match one row in B	Counties → State

> our county merge is 1:1 - each county appears once in each dataset

Step 3: Perform the Merge

Combining our datasets

Merge options:

- inner: Keep only counties in both datasets
- left: Keep all counties from elections data
- right: Keep all counties from income data
- outer: Keep all counties from either dataset
- > we use 'inner' to focus on counties with complete data

Step 4: Calculate Vote Shifts Creating our analysis variable

```
1 # Calculate the shift in Democratic vote share
2 data['dem_shift'] = data['2024'] - data['2016']
1 # Summarize this new variable
2 sns.histplot(elections, x='dem_shift')
```

> now we can explore the relationship with income

Step 5: Analyze the Relationship

Q. Does county income relate to voting shifts?

> what patterns do you see?

Common Merge Issues Watch out for these problems

- Missing values: Some counties might not have income data
- Duplicate keys: Same county appearing multiple times
- Type mismatches: FIPS stored as numbers vs strings
- Different naming: "St. Louis" vs "Saint Louis"

```
1 # Check for duplicates before merging
```

- 2 elections['county_fips'].duplicated().sum()
- 3 income['FIPS'].duplicated().sum()

Summary Merging allows us to answer richer questions

- Identify common columns to join on (FIPS codes)
- Prepare data for merging (create consistent identifiers)
- *Merge* using appropriate join type (inner, left, right, outer)
- Transform to create analysis variables (vote shift)
- Analyze the combined dataset

ECON 0150 | Economic Data Analysis Part 2: Data Operations Practice

Practice Problems for MiniExam 2

Practice 1: Trace the Filter

Which products remain after filtering?

Product_ID	Category	Price	In_Stock
P001	Electronics	299	True
P002	Clothing	49	False
P003	Electronics	89	True
P004	Food	12	True
P005	Clothing	79	True

Filter: (Price < 100) AND (In_Stock == True)</pre>

Answer: P003, P004

Practice 2: Multi-Step Operations Track data through multiple transformations

Sale_ID	Store	Amount
S001	North	120
S002	South	80
S003	North	150
S004	South	90
S005	North	100

Operations:

- 1. Filter for Amount ≥ 100
- 2. Group by Store
- 3. Calculate mean Amount

Answer: North, 125

Practice 3: Data Cleaning Decisions

What cleaning is needed for each entry?

Response_ID	Duration
R001	"5 minutes"
R002	"180"
R003	"about 3 min"
R004	"N/A"

For each entry, select ALL that apply:

R001: [Extract number] [Remove text] [Convert type] [Handle missing] [Already clean]

R002: [Extract number] [Remove text] [Convert type] [Handle missing] [Already clean]

R003: [Extract number] [Remove text] [Convert type] [Handle missing] [Already clean]

Practice 4: Build Complex Filters

Construct the correct boolean logic

Goal: Find all employees who:

- Work in either Tech or Sales departments
- AND have been with company more than 2 years
- AND earn less than \$70,000

Use these components to construct a filter:

- 1. (Department == 'Tech')
- 2. (Years > 2)
- 3. (Department == 'Sales')
- 4. (Salary < 70000)

Answer: (1 OR 3) AND 2 AND 4

Practice 5: Choose the Right Transformation Why transform data?

Scenario: Comparing test scores across different schools where class sizes vary dramatically (10-50 students)

You have:

- Total Points Earned (all students combined)
- Number_of_Students

Which transformation makes schools comparable?

- a. Total_Points_Earned + Number_of_Students
- b. Total_Points_Earned Number_of_Students
- c. Total_Points_Earned / Number_of_Students
- d. Total_Points_Earned * Number_of_Students

Answer: c) Creates average score per student

Practice 6: Predict Grouping Output What will the grouped data look like?

Order_ID	Customer	Amount	Region
O001	Alice	50	East
O002	Bob	30	West
O003	Alice	70	East
O004	Charlie	40	East
O005	Bob	60	West

We've Grouped by Customer then Summed by Amount.

How many rows in output?

What's the sum for Bob? _____

Which customer has highest total?

Answers: 3 rows, 90, Alice (120)

Tips for MiniExam 2 Key concepts to remember

Filtering:

- AND: both conditions must be true
- OR: at least one condition must be true

Grouping:

- Output has one row per group
- Choose the right aggregation (sum, mean, count, etc.)

Tips for MiniExam 2 Key concepts to remember

Transformations:

- Division normalizes for fair comparison
- Log transformation helps with different scales

Data Cleaning:

- $Text \rightarrow Number needs type conversion$
- *Missing values: drop or fill (not both!)*
- Consistent format before analysis